NAVAL POSTGRADUATE SCHOOL Monterey, California

EC 3550 FINAL EXAM 12/95 Po

- This exam is open book and notes.
- There are four problems; each is equally weighted.
- Partial credit will be given; be sure to do some work on each problem.
- \bullet Be sure to include units in your answers.
- Please circle or underline your answers.
- \bullet Show ALL work.
- Write only your name on this sheet.
- Exams and course grades *should* be available outside the Optical Electronics Laboratory (Bu 224) on **Thursday afternoon**, **14 December**.

Course grade: _____

• Have a good holiday season and enjoy your break!

Name:			

FIBER SPECIFICATIONS

	Fiber #1	Fiber #2	Fiber #3	Fiber #4
Size	50/125	62.5/125	10/125	100/140
g	1.90	∞	8	1.78
NA	0.15 (at r = 0)	0.20	0.09	0.18 (at r = 0)
α	$2.0~\mathrm{dB/km}$	$1.0 \; \mathrm{dB/km}$	1.2 dB/km	$5.0~\mathrm{dB/km}$
@ 850 nm				
α	$1.0 \; \mathrm{dB/km}$	$0.8 \; \mathrm{dB/km}$	$0.7~\mathrm{dB/km}$	$2.0~\mathrm{dB/km}$
@ 1300 nm				
α	$0.6~\mathrm{dB/km}$	$0.4~\mathrm{dB/km}$	$0.4~\mathrm{dB/km}$	$0.8~\mathrm{dB/km}$
@ 1550 nm				

SOURCE SPECIFICATIONS

	Laser #1	Laser #2	LED #3	Laser #4
Wavelength	850 nm	1300 nm	850 nm	$1550~\mathrm{nm}$
$\Delta \lambda$	0.5 nm	1.0 nm	25 nm	1.1 nm
Power at	$0.50~\mathrm{mW}$	$0.8~\mathrm{mW}$	$60~\mu\mathrm{W}$	$2.0~\mathrm{dBm}$
pigtail end				
Pigtail size	$62.5/125~\mu{\rm m}$	$10/125 \; \mu { m m}$	$200/300 \; \mu { m m}$	$8/125 \; \mu { m m}$
Pigtail NA	0.20	0.12	0.25	0.10
Pigtail type	Step index	Step index	Step index	Step index

DETECTOR SPECIFICATIONS

	Detector #1	Detector #2	Detector #3
Material	Silicon	Germanium	InGaAs
Responsivity	0.8 @ 850 nm	0.2 @ 1300 nm	0.3 @ 1300 nm
A/W @ $M = 1$		0.3 @ 1550 nm	0.45 @ 1550 nm
C_d	3 pF	1 pF	2 pF
Excess noise	$M^{0.3}$	M^1	$M^{0.6}$
factor			
Bulk dark	0.10 pA	$10~\mu\mathrm{A}$	$0.1~\mu\mathrm{A}$
current			
Surface dark	0	1 nA	0
current			

IMPORTANT: Specifications of numbered components are shown in the tables.

1. An optical source is connected to a 1x4 coupler, a 1.5 km length of fiber, another 1×4 coupler, and a receiver as shown in the figure below. The source, receiver, and couplers all have pigtails of 1 m length. The system uses connectors with a loss of 1.2 dB per pair. The fiber loss is 1.2 dB/km and the excess loss of each leg of the 1×4 coupler is 0.5 dB for each output. The source is an LED that is guaranteed to produce 100 μ W in the fiber pigtail when driven by 100 mA of current.

If the minimum power required at the receiver is 100 nW, calculate the minimum source drive current $in \ mA$.

Figure 1: Setup for Prob 1.

- 2. Detector #3 is used as an APD in a 100 Mb/s link operating at 1550 nm. The detector operates with just a load resistor of 1 k Ω with a noise temperature of 350K (i.e., there is no preamplifier). If the incident optical power is 500 nW, find the signal-to-noise ratio (in dB) when the device gain is 60% of its optimum value.
- 3. Fiber #3 is used with laser #4 in an 800 Mb/s link with RZ coding. The core index is 1.456 and the cladding index is 1.452.
 - (a) Calculate the dispersion-limited link distance (in km) for material dispersion.
 - (b) Calculate the dispersion-limited link distance (in km) for waveguide dispersion.
- 4. Source #1 operates in a 500 Mb/s link with RZ coding using fiber #2. The total losses of the link are 38.0 dB. Detector #1 is used as an APD with a gain M=50. The detector operates into a 100 Ω load resistor with a noise temperature of 350K. There is no preamplifier.
 - (a) Find the total mean-square noise current of the receiver.
 - (b) Find the BER of the link. (You may find it useful to use the approximation, ${\rm erfc}(x)\approx e^{-x^2}/2x\sqrt{\pi}$.)